If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-10x=456
We move all terms to the left:
3x^2-10x-(456)=0
a = 3; b = -10; c = -456;
Δ = b2-4ac
Δ = -102-4·3·(-456)
Δ = 5572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5572}=\sqrt{4*1393}=\sqrt{4}*\sqrt{1393}=2\sqrt{1393}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{1393}}{2*3}=\frac{10-2\sqrt{1393}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{1393}}{2*3}=\frac{10+2\sqrt{1393}}{6} $
| 5^x=9765625 | | (50+2x)*5=600 | | -9x+7=-6x+27 | | (12-4x)*7=28 | | -3x-1=-8x+23 | | b=15(b+2)+15+2b-9 | | 2x+8=118 | | 5r-7=-17 | | 3x^2+4=1 | | 2x+8=118° | | -9p-10=-127 | | -9+4m=67 | | 3k=-16 | | 9x-16=7x+50 | | c=3.141/2 | | (4x-5)(3x+8)=12x2+57 | | -17+r=-34 | | .25(4x+6)=0 | | 32-n=24 | | 3/4+1/x+2=0 | | K+12=-2k-4 | | 6x+4-12x=–10x+18x–3 | | 32-n=16 | | 4(2x+3)=-3(x-1)31 | | −5(6x+6)=30 | | -2n-8=22 | | −5(6x+6)=30* | | 90=0.14+0.5x | | 8+n/5=6 | | (1-x)(2-x)=(2x)^2/(49.7) | | (1-x)(2-x)=(2x)^2/49.7 | | 9x+2+5x-1=360 |